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Stationary states of Toom cellular automata in simulations

Danuta Makowiet
Institute of Theoretical Physics and Astrophysics, Gakadniversity, ulica Wita Stwosza 57, 80-952 GslgrPoland
(Received 21 September 1998; revised manuscript received 7 Jung 1999

Stationary states of Toom probabilistic cellular automata are tested in computer experiments. The aim of the
tests is to identify the features characterizing the equilibrium states understood as in statistical mechanics.
Namely, we investigate the following: scaling laws that involve critical paramg&ens andv, locality of the
interactions, and density of the relative entropy between stationary states. The arguments showing that station-
ary Toom states are not the equilibrium ones are provifeti063-651X%99)12310-9

PACS numbgps): 05.50+q, 05.70.Jk

[. INTRODUCTION [4,12,13, the properties of the thermodynamic system that
arise from Toom probabilistic cellular automata are still un-
The Monte Carlo approach to emulate the canonical enelear.
semble in computer simulations is one of the most powerful It is commonly believed that if the stationary measure of
techniques among the computer methods developed for stany stochastic system satisfies the detailed balance condition,
tistical physics during the recent years. This approach prothen its stationary evolution generates a random walk on the
vides not only the estimates for thermodynamic functionsconfiguration space weighted by some Gibbs distribution
but also offers special insight into the local interactions. 1t[14]. Gibbs measures are the central objects of the rigorous
means that we have the opportunity to examine links beelassical statistical mechanics. The fact that a probability
tween the microdynamics and resulting equilibrium systemsneasureu is a Gibbs one implies that the finite-volume con-
[1-3]. The famous two-dimensional Ising system is widely ditional expectation values are determined by Hamiltonians
known as the equilibrium—statistical-mechanics system thathat are defined as sums of local interactigsse[15] for
models the ferromagnetic phenomena. There is much effodetails.
focused on testing of various computer algorithms which The problem of Gibbsianness of stationary states for cel-
would reproduce a system with the Ising-Lenz interactionslular automata is simplified due to the so-called dichotomy
Such algorithms are called kinetic Ising models. theorem[6]. An immediate consequence of this theorem is
The proposition originating from extended dynamical sys-that for cellular automata dynamics satisfying the detailed
tems like cellular automata, or coupled map lattices, is qualibalance condition, all invariant measures are Gibbsian. How-
tatively distinct from the mentioned kinetic models. The evo-ever, the problem whether the detailed balance is a necessary
lution of these systems, i.e., lattices of interacting dynamicabr satisfactory condition for a system to be an equilibrium
systems with discretécellular automatd4—6]) or continu-  one is still open16].
ous(coupled map latticef7,8]) phase space, is governed by  There are reasonsl0] to think that although transition
the set of local dynamical rules instead of local energyrates arising from the stationary Toom probabilistic cellular
which is used in kinetic Ising models. Moreover, the changesutomata do not satisfy the detailed balance condition, the
on a lattice configuration are synchronized, which results in aystem is the equilibrium one. Strictly speaking, the station-
discrete time evolution, while in kinetic Ising models the ary measure is then the Gibbs measure. The idea that cellular
computer algorithms allow techniques that simulate the conautomata with Toom stochastic evolution lead to an equilib-
tinuous time. The main goal of the study of extended dy-rium system is based on the following. First, it is due to
namical systems is to find the relationship between the insimilarity of TCA to Domany probabilistic cellular automata,
vestigated system and the equilibrium one. In particular, onevhich are known to create the well-defined equilibrium sys-
searches for meaning of the basic statistical-mechanic ndem (see, e.g.[5]). Second, to the presence of the so-called
tions such as energy, specific heat, temperature, etc., one alsmder property, which means that any finite island of one
looks for mechanisms that govern the critical phenomenaphase surrounded by the sea of the other phase will decay in
[9,10. In the case when a local rule is not reversible thefinite number of time stepisl1].
results are by no means obvids-8]. Little is known about In the following section we recall the concept Domany
the nature of the stationary phase-space measures in the nd»€A and give the definition of the investigated TCA. This is
ergodic regime, especially when there is more than one statone in a way that the relation between these two models is
tionary measure. easily seen. We also give some insights into the mechanism
In the following, we concentrate on cellular automataof self-establishing stationary islands of the phase opposite
with Toom local rule(TCA) as the alternative to kinetic to the one in the neighborhood.
Ising models. Despite intensive investigations both on the TCA are known to be a nonergodic system for certain
rigorous level [5,10,1] and on the experimental one model parametergt—6,11. Then the critical behavior simi-
lar to the continuous phase transition can be studied. If the
symmetry of the interactions is the same as in the Ising
*Electronic address: fizdm@univ.gda.pl model, then it is generally conjectured that the considered
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stochastic system belongs to the Ising universality dags  with e =1/T the inverse temperature parameter given as
This seems to be valid regardless of the nature of thermody-
namic systemwhether or not it is an equilibrium oheln 1
i i i P=_(1—tanhe) and e5==(1—tanh3)
Sec. Il we discuss whether TCA belong to the Ising univer- 175 £ €375 .
sality class. Our results seem to indicate that this is not true.
However, we show that Toom cellular automata exhibit the Thus, one notices two *

similar critical behavior to the two-dimensional coupled mapDomany model. The lower temperatua@ characterizes

lattices with synchronized dynami¢8]. . . : .
In Sec. IV we give arguments, supported by the compute?gms that form aligned clusters, while the higher temperature

experiments, that in case of the periodic TCA the stationary 1. 'S gs&_gned o areas with spins forming nelghborh.()(‘)‘d.s of
measure is not the Gibbsian one. The two basic features gPINS iN different states. So, the temperature acts as if “kick-

Gibbsian measures, the quasilocality of interactions and varl9_more frequently in the mixed neighborhoods than in the

ishing of the relative entropy density between stationar)}m'form_ clusters. . .
measures, are violated in the critical regime. In this paper we study properties of the T°°“? system via
' computer experiments. Hence, we deal only with finite lat-

tices. Therefore, we have to supplement the evolution rule
(2) with some boundary conditions. By introducing the peri-
Both dynamical systems considered here, Toom an@dic boundary conditions the resulting system becomes infi-
Domany CA, are defined on a square, two-dimensional lathite: it falls into the class of periodic thermodynamic systems
tice, with discrete local variables: spins(t) are assigned to With a period equal td. XL [18]. Phenomena such as phase
each node of a lattice, indéxdenotes square lattice coordi- transitions, are observed in such infinite systems, though it
nates, while denotes the discrete time. Spin may take one ofollows from the rigorous studies that a thermodynamic sys-
the two values, i.eqi(t) e {—1,+ 1} . The state of any spin tem which arises from periodic ones in the limit lof- o,
is determined by states of its three nearest neighbors, namé@members the periodicity of each element of the sequence
N;,E;,C;. The neighbors are chosen as follows: [19]. Hence, the limit of periodic TCA differs from the gen-
eral unconditional thermodynamic Toom cellular automata.
| | | Almost all of the presented results are based on the data
- = N, - - obtained in the following experiment. At tinte=0 states of
all spins are aligned, namely, are set#d. Then, for later
| | | times the evolution rulé€2) is employed with some. The
- . — C=0 - E - . stochasticity of the system is driven by the family of stan-
| | | (1) dard functions accessible in th_e C ANSI running under the
HP-UNIX system. These functions generate pseudorandom

At each time step, states of all spins are updated synchro-numbers by using the well-known linear congruential algo-

nously according to the following evolution rule. L&  rithm and 48-bit integer arithmetic.
=N;+E;+C;. Then, in the Toom system, The evolving system is given some time to reach the sta-

tionary state. In the case of small lattices<{100) this time

temperatures” appearing in the

II. TOOM VERSUS DOMANY CELLULAR AUTOMATA

. 1 is taken to be 100 for all values ofe. Such time intervals
sgnZ;  with probability 5(1+e) are sufficient to find the system in the steady state. For large
oi(t+1)= (2 systemsl =200 orL =300, to ensure that the observed sta-
—sgns;  with probability 1(1_8)_ ti_stical proper_ties QO indeed corr_espond to the _staf[ionary re-
2 gime, we wait until differences in the magnetization aver-

o _ aged over 500 time steps are negligible. At the critical
The parametee €[0,1] mimics the stochastic temperature regime it takes about 30 000 time steps.
effects.e =1 means completely deterministic evolution, i.e., “\nhen the system is in a stationary state, then at each time

temperaturel =0, while =0 corresponds to the fully ran-  step a macroscopic observatlés computed according to a
dom rule, i.e., temperaturé=. Hence,e can be seen as present microscopic state of a lattice,

related to thermodynamic temperature via the following re-

lation: A =A{oi(D}i-1,..12). @
1
s—>tanhf. (3 Next, to decrease the influence of the local fluctuatiéis)
is averaged along a trajectory of some lengtlusually T
In the Domany system, =10000), i.e.,
o(t+1) .1
' A== > A®). (5)
. [1—8? for |3;|=1 t=L...T
sgnx;  with probability
I 1_8? for [%i[=3 To avoid the possibility that the examined state is attracted
= 2 for |3|=1 by some metastable state, we perfddnmdependent experi-
—sgn;  with probability{ é ' ments, withN in the range 100 ..,1800. Therefore, the final
ez for |Xi[=3, ensemble average for an observahles given as
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FIG. 2. Typical snapshots of TCA, in time asymptotic regions,
observed for a linear size lattide=200. Up- and down-spins are
represented by white and black pixels, respectivédy. Ordered
“ferromagnetic” phases=0.90, (b) Critical regimee=0.82, (c)

FIG. 1. Decay of the magnetizatigm) in Toom CA (dots and Disordered “paramagnetic” phase=0.60.

Domany CA (squares The regimes “ferromagnetic” {m)>0), . )

and “paramagnetic” (m)~0) are separated by the region of criti- Other edges that go vertically and horizontally have a prop-

cal changes. Notice the increase of standard deviation errorgrty of free wandering. Any perturbation that affects a spin
marked by error bars, in the region of the phase transition. from these edges produces a free propagating change which
enlarges the cluster size. Hence, the island phase leaks out-

1 ~ side the cluster towards West or South directions. As the

(A)= N > AW, (6)  result of both these processes we observe the shift of the

- cluster in the West-South direction. Hence, in the case of
whereA¥) means the average of an observabia the sense TCA there is no need to manipulate the temperatures to pro-
tect clusters of aligned spins, as is done in the case of

of Eq. (5) obtained in thek—th experiment. : ;
Since we focus attention on the continuous phase transF—)Ornany CA. However, the Toom mechanism of protecting

tion of the Ising-like type, we concentrate on the following |§Iands of a given ph_ase is weaker than in the Domany one,
observables: since the value of., in Toom model strongly differs from

: o , , : the value ofe, in Domany modelsee Fig. 1
(i) The magnetizatiogm), which according to Eq(4) is The development of spin spatial dependencies can be ana-

0.0 T T L T
06 07 08 0.9 1.0

stochastic perturbation £

defined as lyzed by the two-point spatial correlation functi@y(r) de-
1 fined along the direction, and forr being the spatial sepa-
m) =1z > , ai(t). (7)  ration of two pointsC,(r) is given as
i=1,...] L

. . o : <0'00'rv>_<0'0>2
(i) The magnitude of the magnetization, denoted |log]), is Cn=——"—"5—- (9)
calculated from Eq(6) as 1— (o)

1 1 (k) The exponential decay of the correlation function leads to the

(Imly= > (T > |m(t)|) . (8)  natural definition of the correlation length, along thev
k=1,...] N t=1,..., T direction.

. In Toom CA the spatial extension of newborn clusters of
These two functions are the standard order parameters ex; P

ploited in studies of ferromagnetic, Ising-type systems orﬁilgneg spl?s in the ferrcrmggnetm_; re_glr(fer ‘3 SCY) "fi_r?f
finite lattices[1]. e order of one or two lattice units in any directienThe

In both systems, Toom and Domany, depending on thesystem is thus isotropic. However, close to the transition

. . o 2 point the data show the formation of nonisotropic large-scale
féz(i::]zsst';rzeétgsrgf\;g;:istri)ngé%mzlﬂgzlgﬁzﬁg ?ﬁiﬁnfﬁe dependencies; see Fig. 3. The correlation lengths extracted

critical temperature, denoted Iy, , the systems are of the from the estimations of the exponential decayr) for

) . ; . the basic three directions from the origin to East-South,
paramagnetiaype, since up and down spins are equiprobas

S : . West-South, and East atgs~22+2, &{ye~12+1, andée
ple. Abovescr the initial state phgse}() dominates, which ~15+2, respectively. The distanceis calculated in Pi-
implies the positive total magnetization.

The snapshots taken close to the transition show the fort_agorean metric. The strong correlation between spins

: . . ~~emerges sharply in the system when we appraagtfrom
mation of clusters of aligned spins of the-J phase sur he ferromagnetic side and decay smoothly when passing

rounded by the sea of pluses; see Fig. 2. Notice that atl . .
clusters are islands with a characteristic triangular shape thart]roth towards the paramagnetic regime. Eventually, when

mirrors the triangle of the basic neighborho@. In the .8<0'6(.)0(m t_he case Ok<8°r)’.then the system becomes
2 - isotropic again with the correlation spreaded over a few lat-

purely deterministic Toom CAg=1) the eroder property tice steps: sef12] for details

causes the decay of the clusters of such kind in a few time pS; '

steps. However, when the stochastic perturbation is present,

these islands can live for a long time. This is because the

eroding process attacks any triangle-shaped island through As we have seen in the preceding section, the critical

its edge made of North and East neighbors, only. The twaegime in TCA manifests itself in the way characteristic for

lll. CRITICAL PROPERTIES OF TCA
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02 G e ’ FIG. 4. Direct measure oB,0, and y,o0 0N the large latticd-
=200. Plots of(m) (dot9 and{|m|) (squares are presented as a
function of . Different B,50S and y,qgs are estimated for the
subsequent choice af;,: 0.820, 0.821, 0.822, and 0.823 by linear
FIG. 3. Two-point correlation function of magnetization ob- fits on log-log plots(small windows.
tained on the lattice with. =200 ate=0.820 (the contour plot
EastSouth, WestSouth, and East denote the basic three directioasid wheres, y, andv are the usual, static critical exponents.
for the correlation dependence. The importance of the characterization of the critical changes
by critical exponents lies in the fact that the set of the expo-
any thermodynamic system, i.e., by the increase of correlanents determines the universality class.
tion between spatially separated spins. This signals the oc- As the first step in obtaining the critical exponents for
currence of continuous phase transition. Toom system, we extragd, andy, for the periodic system,
The standard order parameter for the ferromagnetic phasgirectly from the experiments with a large € 200), though
transition is the magnetization, defined by Ef. To avoid  a finite lattice. Figure 4 presents our results. Since we do not
some finite-size lattice effects the magnitude of the magneknow the exact value for the transition point, we fix it, in
tization, defined by Eq8), is convenient to be considered as turn ase,=0.820, 0.821, 0.822, and 0.823. The log-log de-
the order parameter. The susceptibilify) is the other func-  pendence of magnetization and susceptibility on the distance
tion that characterizes the continuous phase transition. Du@ the criticality is expected to be linear. In Fig. 4 small
to the relation between fluctuations of the magnetization angvindows depict the log-log scatter plots of the considered
the linear response of the magnetization to any change of ainctions. In Fig. 4 the bars of the standard deviation errors
external(temperaturgparameter, we have the following gen- for the presented data are included to show that although the

distance from (0,0) [lattice units]

™

distance from (0,0) [lattice units]

eral formula for the susceptibilit3]: size of the lattice is large, we obtain a large variety of results.
The quality of our linear fit coefficients is estimated by
(x)y=(m?)—(m)?, the standard correlation coefficient?. If {(x;.y;),i
=1,...n} are then data points for which the linear relation-
which in the case of a finite-size lattice becomes ship is sought, then denoting sy, ands,, the sample vari-
ance, i.e.,
(xu)=L*(m?)—(|m[)?). (10)

1 1
In the equilibrium thermodynamic system close to the phase SXXIE 2 (X—(x))?, Syy:mz (y—(y»?
transition both magnetization and susceptibility depend alge- ! '
braically on the distance to the critical poir&]. Following ) )
this observation the corresponding power laws are expected'd bysy, the sample covariance, i.e.,
to apply to TCA in the infinite-size limit. Namely, when
stochastic perturbation reaches its critical vadye, magne- 1
tization, susceptibility, and the correlation length should ex- SyTho1 Z (x=0NYy=(Y)),
hibit the following properties:

we obtain the following formula for the correlation coeffi-

_ B >
(Mmyx(e—ge)” for e>eg, cientr:

(x)*(e—ec) 7 for e—eg,

(§)x(e—g¢) " for e—eg, (11 \/SxxSyy.
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The correlation coefficient measures the strength of a linear 0707
relationship betweer andy variables.r? takes its maximal 068 &
value 1 only when all the points of the scatter plot lie exactly s
on a straight line. The slope of this line is given as 066 7
064 |
b: Sﬁ/ 0.62 —E
Sxx " e —
2 9%%z6 0818 #22 0824 0826 0828
r? takes its minimal value 0 when there is no linear relation = 058 & /o614 — ~
betweenx andy. In the following, all linear fits together with : 7 i
the corresponding correlation coefficients are calculated by 256 p /¢ '
the computer programsIGMAPLOT, Scientific Graphic Soft- 054 / VAR Bl
ware version 2.01, designed by the Jandel Corporation. s /] oems
Our data imply that exponents are best consistent with the ~ *% == 130/ '/ 006 |
Ising universality class whesie (0.822,0.823) and then they R S (T A T
are 8. ~0.1 andy,_~0.9. Nevertheless, these results are far cvoL=e0 o f
from the characteristic of the Ising system. However, they O

hint that in the thermodynamic limit of the infinite lattice

size, we can expect well-defined power law behavior.
The reliable values for quantitie8, v, and v for the FIG. 5. Estimates foke, by Binder's method. Plots of cumu-

infinite lattice size are accessible by finite-size lattice studiefants versug are presented for system sizess<Ad0<100. Symbols

[20,21]. Based on the fact that at criticality the correlation correspond to raw data, lines to spline connections of these points to

length ¢ attains the lattice sizé, i.e., é~L, the finite-size ~ determine the intersection regigthe small window.

scaling theory provides the measure for power law behavior

of any observable. It follows that the value of any finite- correlation lengths at criticality; see Eq(11). In order to

lattice-size observable taken at the infinite-size transitioineasurer we take advantage of the scaling properties of

point, nameds?,, scales with the lattice size. For magneti- cumulantsu,,

zation and susceptibility, the finite-lattice-size theory pro-

vides the relations

0.821 0.822 0.823

du
& (o)=L, (14

(Im(eg)lyocL =P, : IR
as well as the properties of logarithmic derivatives of the

(xL(eg))=L?" ™2, (12 higher moments of magnetization, namely,
dlog(|m d log(m? d log{m*
The transition point?, can be determined independently of M Eer), L €cr), L €cr)-
the other quantities by using Binder's methi@&j20]. Bind- de de de (15)

er's method is based on the fact that the fourth order cumu-

lants of the magnetization, i.e., family of functions defined a|| of them obey the same scaling as the cumulants.
for a givenL by the formula To estimate numerically the derivatives in E¢$4) and

4 (15 we use the standard finite centered difference formula.

(m®) (13) We apply this formula for a pair of neighboring poirtsand

3(m?)* e+ A to obtain the approximate derivative at-3A. The
) ) ) error coming from the centered difference formulaA$
are expected to intersect each other at the unique pgint  since all derivatives are linear in the interval af
which is independent of. €(0.820, 0.825). Knowing the linear dependence of the ap-

In Fig. 5 we present our estimates «ff; for TCA. From  proximate derivative we calculate the interpolating value at
the sample data we calculate the scatter points for cumulanis, =0.8222 for each of the considered functions. The ob-
U, versuse for system sizes ranging from=20 to 100. tained data are presented in Fig. 6. Our results yield
Then we interpolate these points by straight lines. By an eye-p 85+0.02. Since the error of the numerical derivation is
inspection we see that the common unique intersection poirﬁeg”gime when compared to the systematic error coming
for all curves falls within the intervad ¢,  (0.8220,0.8224).  from the uncertainty of the position of the infinite-size criti-
Since the step of the tuning parametein our experiments cal point, we estimate the error interval by comparing the
is A=0.001, the best approximation fef, is ¢.,=0.8222.  found value ofv to the estimates obtained 4f,,=0.822 is
Thus, our further estimates have the systematic error prozonsidered.
duced by some uncertainty in the choicef. One can Having estimated the value of we can proceed to mea-
notice that the common value of the cumulants at the criticabure3 andy according to Eq(12). Again, for the considered
point is U (e,)~0.6067 and this value is close to the cor- functions|m|, m?, andm* we apply the linear interpolation
responding one found for the systems from Ising universalityto calculate values of these functions at the critical point
class,Usjng€ (0.610,0.612) 8]. e, =0.8222. These results are presented in Fig. 7.

Having founde., we can proceed further to estimate To sum up, let us compare the characteristic features of
the critical exponent that is responsible for divergence of thehe critical behavior of TCA to the corresponding quantities

UL(S):]._
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1000 (a)

{log-log Iml: 0.146(0.998)
. 2: 0.280(0.999)

019 B 5139
1 Vv

A(U)l g0 1.222(0.997)
Alog(<IMI>)l g gy, :1.132 (0.998)
Alog(<m®); o,,): 1.154 (0.998)
Alog(<m*>)l g gy: 1.172 (0.998)

m*: 0.548 (0.999)

100 - Alog(<m®>)

T
10 100

L: 20, 30, 40, 60, 80,100 [lattice units]

(b)

Tlog-log

10 1 1 1 ! 1 L ) ! T 100__
100 ]

lattice size L.:20,30,40,60,80,100 [lattice units]

% - 1.857(0.999)

L% <m®> <Imi>?)
FIG. 6. Estimates fow in TCA via the finite-size theory from,
the slope of derivative of the 4th order magnetization cumulant at

critical point U; the slope of the logarithm derivatives ¢fm|),

(m?), and{m*) [see Eq(15)] at the critical point. Data collected in 10 -

1400,. . .,120 experiments with latticed =20, ...,100respec- " ' T T T

tively are presented on log-log plots. The numbers Jrmean the 10 100

correlation coefficients? for the corresponding linear fits. L: 20, 30, 40, 60, 80, 100 [lattice units]

in other two-dimensional2D) ferromagnetic systems: rigor- /G 7. Estimates fo@) 8 and(b) y in TCA via the finite-size

scaling: (@ B/v from log(|m(ec) (L), log(m(ec))(L), and

log((m*(ec)))(L); (b) ¥/v from logL?[(mP(ec))(L)—(Im(ec)YA(L)] -
The log-log plots.

ous quantities of the two-dimensional Ising system and ex
ponents in synchronized coupled map lattice,

B Y v to our mean values show the perfect relationship. Therefore,
we are sure that our results are reliable, though errors do not
T(,:A 0.12 1.59 0.85 allow us to provide more significant digits in the presented
Ising (2D) 0.125 1.75 1 numbers.
CML [8] 0.115 1.55 0.89 The above discussion supports our final statement that
(16) TCA and CML do belong to the same universality class,

although the weak-Ising class membership in case of TCA is
The difference between values of the exponents, especiallyot clear: the Toom exponents only roughly satisfy the hy-
in v and v, for the Ising and Toom systems suggests thaperscaling relation that is characteristic for Ising and weak-
TCA do not belong to the Ising class of universality. But one|sing systems: B+ y=2v.
can find the relationship between TCA and the synchronized In traditional experimental worknot computer simula-
coupled map lattices: the first and third line of E§6). In  tions) the types of continuous phase transitions are distin-
the case of CML it is stress€d] that the exponent ratios guished by the shape of curves, which represent the specific
Blv and y/v do take the Ising system values. This fact heat dependence on temperat[22,23. In the Ising phase
places the CML system in the weak-Ising universality classtransition the left wing of the curve of the specific heat,
For the Toom system we hay&/ v=0.139 andy/v=1.857;,  corresponding t@ =0, must take significantly lower values
see Fig. 7. Both ratios are rather different from the correthan its right wing. The opposite case, when the specific heat
sponding exponents of Ising system. is much higher before the phase transition than after it, is the
Before stating any final conclusion, however, we have tocharacteristic feature of the, so-called, diffusive phase tran-
consider errors. Besides the systematic error stemming fromsition.
our truncation ok, , we have a constant source of statistical ~ Since in our case the concept of thermodynamic free en-
errors. The expectation values of the magnitude of magnetiergy is undefined, we evaluate the specific heat by assuming
zation(see Figs. 1 and)&arry the standard deviation errors that the energy density of the system is proportional to the
of 15 to 25 % independently of the system size. Such largelensity of nonclustered spins. This idea arises from the fa-
errors are expected to occur since we are in the dynamicahous Pirogov-Sinai theory according to which the energy of
region of ergodicity breaking and symmetry breaking. Fortu-a lattice state is carried by the contours that surround pure
nately, all linear regression coefficients calculated accordinghase cluster$l5,18. We estimate the energy density in
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FIG. 8. Specific heat vs temperatufe{see Eq.(3)] for Toom distance from the lattice center O [lattice units]
PCA. The specific heat is calculated as a change in the energy
density caused by the small change of temperature at the given FIG. 9. Influence of boundary spins which are all settoTCA
temperature. The obtained shape hints at the diffusive mechanisevolve with differente. The influence arrives through East and
of the phase transition. North boundaries and changes the internal lattice state. The minimal

) ) ~ subordering gained fof=0.800 ism’>0.12. L =300.
TCA stationary states in two way$l) a nonclustered spin

means a spin for which the Toom neighborhddd is not

! ) A. Quasilocalit
homogeneous, an@) a nonclustered spin means a spin for Q y

which the Ising neighborhoof.e., the four spins surround- Quasilocality on the lattice systems means that any finite-
ing the central spin and the central spin itsédf not homo-  volume expectations do not depend on spins which are suf-
geneous. ficiently distant. On the large latticd,=300, we test the

The results are presented in Fig. 8. Thus, the phenomendafluence of distant spins on the magnetization of a €pin
logical classification of the continuous phase transitionsvhich is located at the lattice center. The experiment goes as
based on the shape of the specific heat curve suggests tHatlows. The TCA system initiated with all spins up is left to
the Toom system undergoes the phase transition of the difeach its stationary state at the given stochastic parameter
fusive type. Then, the periodic boundary conditions are changed into the

fixed boundary of all spins up. After allowing the system to
IV. GIBBSIANNESS OF TCA reach the stationary state with the new boundaries, we begin
) . . to measure the magnetization of all spin sites located along

The last question we would like to address is whethefne central line of a lattice. The results are presented in
TCA are the equilibrium system. We will seek the answer by,:ig_ 9.
checking if their stationary measure is a Gibbs one. If the "Iy this experiment we are able to estimate the difference
stationary state is Gibbsian, then for any finite configuration,anveen the magnetization of the sgron a periodic lattice
{0}, Inu(oy) exists and represents the energy of the cony ;. v and the magnetization of the spihfor fixed bound-
flguratlon.{aA}. Slnce.m TCA the existence of steady clus- ary conditionm(a|(+)). In Fig. 9 arrows mark the mini-
ters of aligned spins is closely related to the appearance Qf3 gistance between the obtained magnetization value and
corresponding vertical and horizontal lines of such spins, Wene value observed in the stationary periodic state.
can expect that the energy carried by the configurations is ; jg easy to see the conditions under which there is no
determined by the linear size of a cluster rather than by it$pserved influence of the surrounding boundaries:

volume. This would suggest that the dynamics of the TCA (a) before the phase transition, whes>0.84, then
generates the feature typical for the Ising interactions. Mmool (+))=m(op) ' '

There are two basic features that characterize a Gibbs (b) after the phase transition, when<0.72, then
measure[6,10,15,16 quasilocality of interactions, which Mool (+))=m(ce) =0. ’ '
means that the finite-volume conditional probabilities are ngever if thg plus boundary is switched to the minus
continuous with respect to the external conditions, and vang o ndary t,herm(a I(=))=—m(cp). Hence, in a rather
ishing of the relative entropy density between Station"’Warge inte’rval ofe, ?here is obser\(?ed influer,we of distant

measures arising from the same lnteractlon_s. spins on stationary states generated on the large lattice.
In this section no attempt is made to provide error bars on

values presented. Errors may arise from a combination of
finite-size effects, finite equilibration time effects, and sys-
tematic deviations due to the choice of the measurement pro- The stationary measures arising from any Markov process
cedure. could be Gibbsian measures if the relative entropy density

B. Large deviations



3794 DANUTA MAKOWIEC PRE 60

0015 ‘ ‘ ‘ 0.002
0.010 -
z
% -
E i(-[+) : L=200, £=0.820
[=%
0.005 | regression coefficients:
0.001 -
———_1=28...39:-1.8x10°(r >=0.34)
N e 1=61...69:-1.5x103(r 2=0.91)
TN —1=30...70:-0.8x105(r 2=0.70)
0'000-1.0 -0.5 oio ois 1.0
<m(20 x 20} >

FIG. 10. Probability distribution of blocks with 2020 size
magnetized at a given value=0.820 andL=100. Each curve \Q%N
represents a histogram of the results observed in subsequent 10 004,000
time steps.
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25 30 35 40 55 60 65 70 75 80

i(1|v) between different stationary measugesind v origi- block size | [lattice units]

nating from the same interactions is zeroi(lfz| ) >0, then FIG. 11. Decay of relative entropy densityf —|+) indicated
both measures are non-Gibbsigh15|. The large deviation py plocks of <40 points atl>50 as the block size for which
theoremg 15] provide the powerful tool to estimatéu|v). i (—|+)~0 (dashed line with regression 1.8 10°%). The data

Namely, if x_ and u, are two stationary TCA measures collected for 1=61,...,70 (dotted line with regression
corresponding to{) and (+) phases, then the relative en- —1.5 107) yield different(largep block size fori, to attain zero.
tropy density between these two meastifgs_|ux ) can be  The numbers in() mean the correlation coefficient for the pre-
extracted from the probability that the large area of spinsented data.
with negative magnetization occurs in the stationary state
described by theu, measure. The result(u_|x.)>0  can say that with the increase of the block size the decay of
means that these measures have the probability of large deke relative entropy density slows down.
viations, which is “too small” for Gibbsianness. Fortunately, when we shift a little from the critical point
From computer experiments we collect data on the magpreserving the nonergodic property of a system, we can ob-
netization of square blocks of the sik&|. Then, using the tain the value for the relative entropy density. The thermo-
formula dynamic state is in the nonergodic regime if the change of
the phase, which is placed as the boundary, switches the
phase of the inside state, sgib]. The mean magnetization
of a state on a periodic lattice obtainectat 0.800 is zero. If
(17)  the (+) boundary is put in place of the periodic one, then the
mean magnetization becomes positive. Figure 12 gives esti-

1
(| py)=Ilim |—z|n Probability, {m(oy)<0}

| o

we estimate the limit mates fori;(u_|v), wherev is the stationary measure for
£=0.800. Extrapolating these results, we conclude that at
(| )=limi(p_|wy). =105 the relative entropy density would reach zero. How-
I—o ever, this block size is greater than the lattice size considered

in this experiment; therefore, the relative entropy density be-

As was mentioned earlier, configurations, representativeveen stationary measures of Toom cellular automata evolv-
of critical stationary states, contain long-living and large ob-ing in the critical regime on the periodic lattice is positive.
jects: domains of one phase. In Fig. 10 we present the prob-
ability distribution of square blocks of 2020 spins at a
given magnetization, found after averaging over subsequent
10 000 time steps. It appears that the total magnetization The critical regime in TCA manifests itself in the way
changes over a long period of time. This long time correlacharacteristic to any thermodynamic system, i.e., by the
tion implies difficulties in giving a reliable value for the limit rapid increase in the two-point correlation function of spin
of ij(u—|u+) asl—o. In Fig. 11 we present our attempts to states, if the temperature, like stochastic parameter, is fine
provide the limit value forii (x| ). If blocks of| <40 are  tuned. However, analogies with equilibrium systems must be
considered, then extrapolated linearly would give zero for treated with great care, especially when the stochastic param-
I>50. Since processing data for large blocks demands mucétere is defined at the microscopic scale only, and cannot be
more computer time, we skip somepoints and start our easily related to the macroscopic temperature.
observations at blocks, with sizés60. The data collected On the stationary configurations of TCA we observe the
for the blocks : 6681 <70, indicate that, would attain zero  process of emergence of islands of one phase. The mecha-
when blocks are of a sizie>80. Concluding our trials, we nism behind this phenomenon is the following: once the line

V. CONCLUSIONS
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0.002 fluctuation dominated transitions. On the other hand, the
specific-heat property indicates the diffusive mechanism of
the phase transition. These two mechanisms govern together
the phase transition result that the values of the particular
exponents of Toom cellular automata are distinct from those

i(4v) : L=100 , € = 0.800 corresponding to Ising system. Moreover, TCA seem to not
. 6 2 belong to the weak-Ising universality class, either. However,
regression |=60..72:-4x10™ (r < =0.40) the values of TCA exponents are close to the values found in
! the synchronized CML system.
0.001 In general, deriving accurate numerical estimates for

—o— m<0.0

regression quantities, which characterize the critical regime of an ex-

tended dynamical system, is a difficult task; $8kand ref-
erences given therein. We believe that the employed meth-
odology here is reliable. Estimates of critical exponents
and g are derived from at least three quantities. Only evalu-
I— ation of they static exponent is based on the properties of
M‘qﬂg\ one function. Although the statistical errors accompanying
measured observables are large, the correlation coefficients
0000 == GOV for our linear fits are always very close to 1. This fact addi-
30 40 60 65 70 75 80 85 90 95 100105 _ '
. tionally ensures accuracy of the presented results. However,
block size | these results could be easily improved if one performs ex-

FIG. 12. Density of the relative entropy between stationary meaP€riments which provide access to the critical point closer
suresu_ and », which is the measure of TCA shifted a little from than we have done.

the critical point. Linear regression indicaties-0 atl>105. This Our qonsiderations on Gibbsianngss are 5}'30 accompanied
is impossible on the lattice of size=100. The number iti) mean by relatively large errors. In numerical studies we have to
the correlation coefficient? for the linear fit. balance the influence of periodicity of the system and com-

puter efficiency. The effect of the system periodicity is that a

of aligned spins located orthogonally to North-East directions'e”'cre"j‘ted island of one phaéshich appears at random

is established, the dynamics proceeds to spread the phaseclﬂn. dommate'the stationary state for a long time. Th'? IS SO
the interior below this line, i.e., towards South and West The'“'mII the next |sla_md emerges and takes over the domination
S : the configuration. The way to weaken this constant pro-

island formed in this process attains the characteristic Shadcgess of chanaes in the stationary state is to consider larger
of the scaled basic neighborhood. This characteristic sha 9 y 9

allows the long existence of any island. The process involve ylocks on the larger lattice _fqr longer times of obsgrvatlons.
owever, the computer efficiency goes down rapidly when

in formation of steady clusters of one phase seems to bﬁ]e system size increases. The other way of improving reli-
similar to that which governs the critical behavior in all sys-_, . y . e Y P 9
ability of our estimates consists of searching parallelly for

tems of the Ising type. However, in case of TCA the specific ” : . .

conditions necessary to establish a steady island make t nsities of the rel_anve entropf._| ) in Toom CA and

total probability that a cluster of opposite phase forms too omany CA. This is our program for the future.

small for Gibbsianness. This research was supported by Polish Committee of Re-
On one hand, the static critical exponents found by ussearch KBNPB0273/P03/99/16. Simulations were partially
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the hyperscaling relation 2+ y=2v, which is typical for = Gdansk, Poland.

[1] K. Binder, in Monte Carlo Methods in Statistical Physics [9] F. J. Alexander, I. Edrei, P. L. Garrido, and J. L. Lebowitz, J.
(Springer-Verlag, Berlin, 1979 Stat. Phys68, 497 (1992.

[2] D. Stauffer,Annual Reviews of Computational Physjgdorld ~ [10] Ch. Maes and K. Vande Velde, Commun. Math. Phig9
Scientific, Singapore, 1994Vols. 1-II. 277(1997). ) )

[3] J. J. Binney, N. J. Dowrick, A. J. Fisher, and M. E. J. Newman,[11] A- L. Toom, N. B. Vasilyev, O. N. Stavskaya, L. G. Mity-
in The Theory of Critical PhenomenéDxford University g:seerI]IISIZ':l?éyI;teer:srquL;g]c?(;/i’cizlndMiﬁq'g}ypIr\l/lgoOrLOr:/c’)gf:l(:a(;Etseucjc
Press, Oxford, 1992 ' ' '

. . by R. L. Dobrushin, V. I. Kryukov, and A. L. ToortManches-
[4] Ch. H. Bennett and G. Grinstein, Phys. Rev. L&, 657 ter University Press, Manchester, 1990

(1985. [12] D. Makowiec, Phys. Rev. B5, 6582(1997); Acta Phys. Pol.
[5] J. L. Lebowitz, Ch. Maes, and E. R. Speer, J. Stat. PG9s. B 29, 1599(1999.

117(1990. . [13] D. Makowiec, Phys. Rev. B6, 5195(1997.
[6] Ch. Maes and K. Vande Velde, Physica286, 587 (1994. [14] T. M. Liggett, Interacting Particle SysteméSpringer-Verlag,
[7] J. Miller and D. A. Huse, Phys. Rev. 48, 2528(1993. Berlin, 1985.

[8] P. Marcq, H. Chate, and P. Manneville, Phys. Rev. Léf.  [15] A. C. D. van Enter, R. Fernandez, and A. D. Sokal, J. Stat.
4003(1996; Phys. Rev. B55, 2606(1997). Phys.72, 879(1993.



3796 DANUTA MAKOWIEC PRE 60

[16] R. Fernandez, Physica 263 117(1999. [20] K. Binder, Z. Phys. B43, 119(1981.

[17] G. Grinstein, C. Jayaparash, and Ye Hu, Phys. Rev. B&it. [21] D. Landau, inProceedings of the 8th Joint EPS-APS Interna-
2527(1985; B. C. S. Grandi and W. Figueiredo, Phys. Rev. E  tional Conference on Physics Computingdited by P.
53, 5484 (1996, Borcherds, M. Bubak, and A. Maksymowi¢&cademic Com-

puter Centre Cyfronet, Krakow, 1996

[18] Ya G. Sinai, Theory of Phase Transitions: Rigorous Results [22] A. Munster, Statistical ThermodynamicgSpringer-Verlag,

(Academiai Kiadp Budapest, 1982 M. Zahradnik, Chem. Berlin, 1969, Vol. 1.
Phys.93, 559(1994. [23] J. Klamut, K. Durczewski, and J. Sznajdfroduction to Phys-
[19] G. Giacomin, J. L. Lebowitz, and Ch. Maes, J. Stat. PBgs. ics of Phase TransitionéPolish edition by Zaktad Narodowy

1375(1995. im. Ossolirskich, Wroctaw, 1978



