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Stationary states of Toom cellular automata in simulations
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Stationary states of Toom probabilistic cellular automata are tested in computer experiments. The aim of the
tests is to identify the features characterizing the equilibrium states understood as in statistical mechanics.
Namely, we investigate the following: scaling laws that involve critical parametersb, g, andn, locality of the
interactions, and density of the relative entropy between stationary states. The arguments showing that station-
ary Toom states are not the equilibrium ones are provided.@S1063-651X~99!12310-9#

PACS number~s!: 05.50.1q, 05.70.Jk
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I. INTRODUCTION

The Monte Carlo approach to emulate the canonical
semble in computer simulations is one of the most powe
techniques among the computer methods developed for
tistical physics during the recent years. This approach p
vides not only the estimates for thermodynamic functio
but also offers special insight into the local interactions
means that we have the opportunity to examine links
tween the microdynamics and resulting equilibrium syste
@1–3#. The famous two-dimensional Ising system is wide
known as the equilibrium–statistical-mechanics system
models the ferromagnetic phenomena. There is much e
focused on testing of various computer algorithms wh
would reproduce a system with the Ising-Lenz interactio
Such algorithms are called kinetic Ising models.

The proposition originating from extended dynamical s
tems like cellular automata, or coupled map lattices, is qu
tatively distinct from the mentioned kinetic models. The ev
lution of these systems, i.e., lattices of interacting dynam
systems with discrete~cellular automata@4–6#! or continu-
ous~coupled map lattices@7,8#! phase space, is governed b
the set of local dynamical rules instead of local ener
which is used in kinetic Ising models. Moreover, the chan
on a lattice configuration are synchronized, which results
discrete time evolution, while in kinetic Ising models th
computer algorithms allow techniques that simulate the c
tinuous time. The main goal of the study of extended d
namical systems is to find the relationship between the
vestigated system and the equilibrium one. In particular,
searches for meaning of the basic statistical-mechanic
tions such as energy, specific heat, temperature, etc., one
looks for mechanisms that govern the critical phenome
@9,10#. In the case when a local rule is not reversible t
results are by no means obvious@6–8#. Little is known about
the nature of the stationary phase-space measures in the
ergodic regime, especially when there is more than one
tionary measure.

In the following, we concentrate on cellular automa
with Toom local rule ~TCA! as the alternative to kinetic
Ising models. Despite intensive investigations both on
rigorous level @5,10,11# and on the experimental on

*Electronic address: fizdm@univ.gda.pl
PRE 601063-651X/99/60~4!/3787~10!/$15.00
-
l

ta-
o-
,
t
-
s

at
rt

h
.

-
i-
-
l

,
s
a

-
-
-
e
o-
lso

a,
e

on-
a-

e

@4,12,13#, the properties of the thermodynamic system th
arise from Toom probabilistic cellular automata are still u
clear.

It is commonly believed that if the stationary measure
any stochastic system satisfies the detailed balance cond
then its stationary evolution generates a random walk on
configuration space weighted by some Gibbs distribut
@14#. Gibbs measures are the central objects of the rigor
classical statistical mechanics. The fact that a probab
measurem is a Gibbs one implies that the finite-volume co
ditional expectation values are determined by Hamiltonia
that are defined as sums of local interactions~see@15# for
details!.

The problem of Gibbsianness of stationary states for c
lular automata is simplified due to the so-called dichoto
theorem@6#. An immediate consequence of this theorem
that for cellular automata dynamics satisfying the detai
balance condition, all invariant measures are Gibbsian. H
ever, the problem whether the detailed balance is a neces
or satisfactory condition for a system to be an equilibriu
one is still open@16#.

There are reasons@10# to think that although transition
rates arising from the stationary Toom probabilistic cellu
automata do not satisfy the detailed balance condition,
system is the equilibrium one. Strictly speaking, the stati
ary measure is then the Gibbs measure. The idea that cel
automata with Toom stochastic evolution lead to an equi
rium system is based on the following. First, it is due
similarity of TCA to Domany probabilistic cellular automata
which are known to create the well-defined equilibrium sy
tem ~see, e.g.,@5#!. Second, to the presence of the so-cal
eroder property, which means that any finite island of o
phase surrounded by the sea of the other phase will deca
finite number of time steps@11#.

In the following section we recall the concept Doma
PCA and give the definition of the investigated TCA. This
done in a way that the relation between these two mode
easily seen. We also give some insights into the mechan
of self-establishing stationary islands of the phase oppo
to the one in the neighborhood.

TCA are known to be a nonergodic system for certa
model parameters@4–6,11#. Then the critical behavior simi-
lar to the continuous phase transition can be studied. If
symmetry of the interactions is the same as in the Is
model, then it is generally conjectured that the conside
3787 © 1999 The American Physical Society



d

er
ru
th
ap

te
ar
s
a

ar

an
la

i-
o

m

ro

re
e.
-
s
re

he

ure
of

ck-
he

via
at-
ule
ri-
infi-
ms
se
h it
ys-

nce
-
a.
ata

n-
the
om
o-

ta-

rge
ta-
re-
r-
al

time

ted

l

3788 PRE 60DANUTA MAKOWIEC
stochastic system belongs to the Ising universality class@17#.
This seems to be valid regardless of the nature of thermo
namic system~whether or not it is an equilibrium one!. In
Sec. III we discuss whether TCA belong to the Ising univ
sality class. Our results seem to indicate that this is not t
However, we show that Toom cellular automata exhibit
similar critical behavior to the two-dimensional coupled m
lattices with synchronized dynamics@8#.

In Sec. IV we give arguments, supported by the compu
experiments, that in case of the periodic TCA the station
measure is not the Gibbsian one. The two basic feature
Gibbsian measures, the quasilocality of interactions and v
ishing of the relative entropy density between station
measures, are violated in the critical regime.

II. TOOM VERSUS DOMANY CELLULAR AUTOMATA

Both dynamical systems considered here, Toom
Domany CA, are defined on a square, two-dimensional
tice, with discrete local variables: spinss i(t) are assigned to
each node of a lattice, indexi denotes square lattice coord
nates, whilet denotes the discrete time. Spin may take one
the two values, i.e.,s i(t)P$21,11% . The state of any spin
is determined by states of its three nearest neighbors, na
Ni ,Ei ,Ci . The neighbors are chosen as follows:

u u u

2 . 2 Ni 2 . 2 .

u u u .

2 . 2 Ci5s i 2 Ei 2 .

u u u ~1!

At each time stept, states of all spins are updated synch
nously according to the following evolution rule. LetS i
5Ni1Ei1Ci . Then, in the Toom system,

s i~ t11!5H sgnS i with probability
1

2
~11«!

2sgnS i with probability
1

2
~12«!.

~2!

The parameter«P@0,1# mimics the stochastic temperatu
effects.«51 means completely deterministic evolution, i.
temperatureT50, while «50 corresponds to the fully ran
dom rule, i.e., temperatureT5`. Hence,« can be seen a
related to thermodynamic temperature via the following
lation:

«→tanh
1

T
. ~3!

In the Domany system,

s i~ t11!

55 sgnS i with probabilityH 12«1
D for uS i u51

12«3
D for uS i u53

2sgnS i with probabilityH «1
D for uS i u51

«3
D for uS i u53,
y-
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with «51/T the inverse temperature parameter given as

«1
D5

1

2
~12tanh«! and «3

D5
1

2
~12tanh 3«!.

Thus, one notices two ‘‘temperatures’’ appearing in t
Domany model. The lower temperature«3

D characterizes
spins that form aligned clusters, while the higher temperat
«1

D is assigned to areas with spins forming neighborhoods
spins in different states. So, the temperature acts as if ‘‘ki
ing’’ more frequently in the mixed neighborhoods than in t
uniform clusters.

In this paper we study properties of the Toom system
computer experiments. Hence, we deal only with finite l
tices. Therefore, we have to supplement the evolution r
~2! with some boundary conditions. By introducing the pe
odic boundary conditions the resulting system becomes
nite: it falls into the class of periodic thermodynamic syste
with a period equal toL3L @18#. Phenomena such as pha
transitions, are observed in such infinite systems, thoug
follows from the rigorous studies that a thermodynamic s
tem which arises from periodic ones in the limit ofL→`,
remembers the periodicity of each element of the seque
@19#. Hence, the limit of periodic TCA differs from the gen
eral unconditional thermodynamic Toom cellular automat

Almost all of the presented results are based on the d
obtained in the following experiment. At timet50 states of
all spins are aligned, namely, are set to11. Then, for later
times the evolution rule~2! is employed with some«. The
stochasticity of the system is driven by the family of sta
dard functions accessible in the C ANSI running under
HP-UNIX system. These functions generate pseudorand
numbers by using the well-known linear congruential alg
rithm and 48-bit integer arithmetic.

The evolving system is given some time to reach the s
tionary state. In the case of small lattices (L<100) this time
is taken to be 100L for all values of«. Such time intervals
are sufficient to find the system in the steady state. For la
systems:L5200 orL5300, to ensure that the observed s
tistical properties do indeed correspond to the stationary
gime, we wait until differences in the magnetization ave
aged over 500 time steps are negligible. At the critic
regime it takes about 30 000 time steps.

When the system is in a stationary state, then at each
step a macroscopic observableA is computed according to a
present microscopic state of a lattice,

A~ t !5A„$s i~ t !% i 51, . . . ,L2…. ~4!

Next, to decrease the influence of the local fluctuations,A(t)
is averaged along a trajectory of some lengthT ~usually T
510 000), i.e.,

Â5
1

T (
t51, . . . ,T

A~ t !. ~5!

To avoid the possibility that the examined state is attrac
by some metastable state, we performN independent experi-
ments, withN in the range 100, . . . ,1800. Therefore, the fina
ensemble average for an observableA is given as
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^A&5
1

N (
k51, . . . ,N

Â(k), ~6!

whereÂ(k) means the average of an observableA in the sense
of Eq. ~5! obtained in thek2th experiment.

Since we focus attention on the continuous phase tra
tion of the Ising-like type, we concentrate on the followin
observables:

~i! The magnetization̂m&, which according to Eq.~4! is
defined as

m~ t !5
1

L2 (
i 51, . . . ,L2

s i~ t !. ~7!

~ii ! The magnitude of the magnetization, denoted by^umu&, is
calculated from Eq.~6! as

^umu&5
1

N (
k51, . . . ,N

S 1

T (
t51, . . . ,T

um~ t !u D (k)

. ~8!

These two functions are the standard order parameters
ploited in studies of ferromagnetic, Ising-type systems
finite lattices@1#.

In both systems, Toom and Domany, depending on
stochastic perturbation strength«, two qualitatively distinct
regimes are observed~Fig. 1!. For values smaller than th
critical temperature, denoted by«cr , the systems are of th
paramagnetictype, since up and down spins are equiprob
ble. Above«cr the initial state phase (1) dominates, which
implies the positive total magnetization.

The snapshots taken close to the transition show the
mation of clusters of aligned spins of the (2) phase sur-
rounded by the sea of pluses; see Fig. 2. Notice that
clusters are islands with a characteristic triangular shape
mirrors the triangle of the basic neighborhood~1!. In the
purely deterministic Toom CA («51) the eroder property
causes the decay of the clusters of such kind in a few t
steps. However, when the stochastic perturbation is pres
these islands can live for a long time. This is because
eroding process attacks any triangle-shaped island thro
its edge made of North and East neighbors, only. The

FIG. 1. Decay of the magnetization^m& in Toom CA ~dots! and
Domany CA ~squares!. The regimes ‘‘ferromagnetic’’ (̂m&@0),
and ‘‘paramagnetic’’ (̂m&'0) are separated by the region of crit
cal changes. Notice the increase of standard deviation er
marked by error bars, in the region of the phase transition.
i-

x-
n

e

-

r-

ll
at

e
nt,
e
gh
o

other edges that go vertically and horizontally have a pr
erty of free wandering. Any perturbation that affects a sp
from these edges produces a free propagating change w
enlarges the cluster size. Hence, the island phase leaks
side the cluster towards West or South directions. As
result of both these processes we observe the shift of
cluster in the West-South direction. Hence, in the case
TCA there is no need to manipulate the temperatures to
tect clusters of aligned spins, as is done in the case
Domany CA. However, the Toom mechanism of protecti
islands of a given phase is weaker than in the Domany o
since the value of«cr in Toom model strongly differs from
the value of«cr in Domany model~see Fig. 1!.

The development of spin spatial dependencies can be
lyzed by the two-point spatial correlation functionCv(r ) de-
fined along the directionv, and forr being the spatial sepa
ration of two points.Cv(r ) is given as

Cv~r !5
^s0s rv&2^s0&

2

12^s0&
2

. ~9!

The exponential decay of the correlation function leads to
natural definition of the correlation lengthjv along thev
direction.

In Toom CA the spatial extension of newborn clusters
aligned spins in the ferromagnetic regime~for «.«cr) is of
the order of one or two lattice units in any directionv. The
system is thus isotropic. However, close to the transit
point the data show the formation of nonisotropic large-sc
dependencies; see Fig. 3. The correlation lengths extra
from the estimations of the exponential decay ofCv(r ) for
the basic three directions from the origin to East-Sou
West-South, and East arejES'2262, jWS'1261, andjE
'1562, respectively. The distancer is calculated in Pi-
tagorean metric. The strong correlation between sp
emerges sharply in the system when we approach«cr from
the ferromagnetic side and decay smoothly when pas
through towards the paramagnetic regime. Eventually, w
«,0.600 ~in the case of«!«cr), then the system become
isotropic again with the correlation spreaded over a few
tice steps; see@12# for details.

III. CRITICAL PROPERTIES OF TCA

As we have seen in the preceding section, the criti
regime in TCA manifests itself in the way characteristic f

rs,

FIG. 2. Typical snapshots of TCA, in time asymptotic region
observed for a linear size latticeL5200. Up- and down-spins are
represented by white and black pixels, respectively.~a! Ordered
‘‘ferromagnetic’’ phase«50.90, ~b! Critical regime«50.82, ~c!
Disordered ‘‘paramagnetic’’ phase,«50.60.
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3790 PRE 60DANUTA MAKOWIEC
any thermodynamic system, i.e., by the increase of corr
tion between spatially separated spins. This signals the
currence of continuous phase transition.

The standard order parameter for the ferromagnetic ph
transition is the magnetization, defined by Eq.~7!. To avoid
some finite-size lattice effects the magnitude of the mag
tization, defined by Eq.~8!, is convenient to be considered a
the order parameter. The susceptibility^x& is the other func-
tion that characterizes the continuous phase transition.
to the relation between fluctuations of the magnetization
the linear response of the magnetization to any change o
external~temperature! parameter, we have the following gen
eral formula for the susceptibility@3#:

^x&}^m2&2^m&2,

which in the case of a finite-size lattice becomes

^xL&5L2~^m2&2^umu&2!. ~10!

In the equilibrium thermodynamic system close to the ph
transition both magnetization and susceptibility depend a
braically on the distance to the critical point@3#. Following
this observation the corresponding power laws are expe
to apply to TCA in the infinite-size limit. Namely, whe
stochastic perturbation reaches its critical value«cr , magne-
tization, susceptibility, and the correlation length should
hibit the following properties:

^m&}~«2«cr!
b for «.«cr ,

^x&}~«2«cr!
2g for «→«cr ,

^j&}~«2«cr!
2n for «→«cr ~11!

FIG. 3. Two-point correlation function of magnetization o
tained on the lattice withL5200 at«50.820 ~the contour plot!.
EastSouth, WestSouth, and East denote the basic three direc
for the correlation dependence.
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and whereb, g, andn are the usual, static critical exponent
The importance of the characterization of the critical chan
by critical exponents lies in the fact that the set of the ex
nents determines the universality class.

As the first step in obtaining the critical exponents f
Toom system, we extractbL andgL for the periodic system,
directly from the experiments with a large (L5200), though
a finite lattice. Figure 4 presents our results. Since we do
know the exact value for the transition point, we fix it,
turn as«cr50.820, 0.821, 0.822, and 0.823. The log-log d
pendence of magnetization and susceptibility on the dista
to the criticality is expected to be linear. In Fig. 4 sma
windows depict the log-log scatter plots of the conside
functions. In Fig. 4 the bars of the standard deviation err
for the presented data are included to show that although
size of the lattice is large, we obtain a large variety of resu

The quality of our linear fit coefficients is estimated b
the standard correlation coefficientr 2. If $(xi ,yi),i
51, . . . ,n% are then data points for which the linear relation
ship is sought, then denoting bysxx andsyy the sample vari-
ance, i.e.,

sxx5
1

n21 (
i

~x2^x&!2, syy5
1

n21(i
~y2^y&!2

and bysxy the sample covariance, i.e.,

sxy5
1

n21 (
i

~x2^x&!~y2^y&!,

we obtain the following formula for the correlation coeffi
cient r:

r 5
sxy

Asxxsyy

.

ons

FIG. 4. Direct measure ofb200 and g200 on the large latticeL
5200. Plots of^m& ~dots! and ^umu& ~squares! are presented as
function of «. Different b200’s and g200’s are estimated for the
subsequent choice of«cr : 0.820, 0.821, 0.822, and 0.823 by line
fits on log-log plots~small windows!.
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The correlation coefficient measures the strength of a lin
relationship betweenx andy variables.r 2 takes its maximal
value 1 only when all the points of the scatter plot lie exac
on a straight line. The slope of this line is given as

b5
sxy

sxx
.

r 2 takes its minimal value 0 when there is no linear relat
betweenx andy. In the following, all linear fits together with
the corresponding correlation coefficients are calculated
the computer programSIGMAPLOT, Scientific Graphic Soft-
ware version 2.01, designed by the Jandel Corporation.

Our data imply that exponents are best consistent with
Ising universality class when«P(0.822,0.823) and then the
arebL'0.1 andgL'0.9. Nevertheless, these results are
from the characteristic of the Ising system. However, th
hint that in the thermodynamic limit of the infinite lattic
size, we can expect well-defined power law behavior.

The reliable values for quantitiesb, g, and n for the
infinite lattice size are accessible by finite-size lattice stud
@20,21#. Based on the fact that at criticality the correlatio
length j attains the lattice sizeL, i.e., j'L, the finite-size
scaling theory provides the measure for power law beha
of any observable. It follows that the value of any finit
lattice-size observable taken at the infinite-size transit
point, named«cr* , scales with the lattice size. For magne
zation and susceptibility, the finite-lattice-size theory p
vides the relations

^um~«cr* !u&}L2b/n,

^xL~«cr* !&}Lg/n22. ~12!

The transition point«cr* can be determined independently
the other quantities by using Binder’s method@8,20#. Bind-
er’s method is based on the fact that the fourth order cu
lants of the magnetization, i.e., family of functions defin
for a givenL by the formula

UL~«!512
^m4&

3^m2&2 ~13!

are expected to intersect each other at the unique point«cr* ,
which is independent ofL.

In Fig. 5 we present our estimates of«cr* for TCA. From
the sample data we calculate the scatter points for cumul
UL versus« for system sizes ranging fromL520 to 100.
Then we interpolate these points by straight lines. By an
inspection we see that the common unique intersection p
for all curves falls within the interval«cr* P(0.8220,0.8224).
Since the step of the tuning parameter« in our experiments
is D50.001, the best approximation for«cr* is «cr50.8222.
Thus, our further estimates have the systematic error
duced by some uncertainty in the choice of«cr . One can
notice that the common value of the cumulants at the crit
point is UL(«cr)'0.6067 and this value is close to the co
responding one found for the systems from Ising universa
class,UIsingP(0.610,0.612)@8#.

Having found«cr we can proceed further to estimaten,
the critical exponent that is responsible for divergence of
ar

y

e

r
y

s

r

n

-

u-

ts

e
nt

o-

l

y

e

correlation lengthj at criticality; see Eq.~11!. In order to
measuren we take advantage of the scaling properties
cumulantsUL ,

dUL

d«
~«cr!}L1/n, ~14!

as well as the properties of logarithmic derivatives of t
higher moments of magnetization, namely,

d log^umu&
d«

~«cr!,
d log^m2&

d«
~«cr!,

d log^m4&
d«

~«cr!.

~15!

All of them obey the same scaling as the cumulants.
To estimate numerically the derivatives in Eqs.~14! and

~15! we use the standard finite centered difference formu
We apply this formula for a pair of neighboring points« and
«1D to obtain the approximate derivative at«1 1

2 D. The
error coming from the centered difference formula isD2

since all derivatives are linear in the interval of«
P(0.820, 0.825). Knowing the linear dependence of the
proximate derivative we calculate the interpolating value
«cr50.8222 for each of the considered functions. The o
tained data are presented in Fig. 6. Our results yieldn
'0.8560.02. Since the error of the numerical derivation
negligible when compared to the systematic error com
from the uncertainty of the position of the infinite-size cri
cal point, we estimate the error interval by comparing t
found value ofn to the estimates obtained if«cr50.822 is
considered.

Having estimated the value ofn we can proceed to mea
sureb andg according to Eq.~12!. Again, for the considered
functionsumu, m2, andm4 we apply the linear interpolation
to calculate values of these functions at the critical po
«cr50.8222. These results are presented in Fig. 7.

To sum up, let us compare the characteristic features
the critical behavior of TCA to the corresponding quantiti

FIG. 5. Estimates for«cr by Binder’s method. Plots of cumu
lants versus« are presented for system sizes: 20<L<100. Symbols
correspond to raw data, lines to spline connections of these poin
determine the intersection region~the small window!.
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3792 PRE 60DANUTA MAKOWIEC
in other two-dimensional~2D! ferromagnetic systems: rigor
ous quantities of the two-dimensional Ising system and
ponents in synchronized coupled map lattice,

b g n

TCA 0.12 1.59 0.85
Ising ~2D! 0.125 1.75 1
CML @8# 0.115 1.55 0.89

~16!

The difference between values of the exponents, espec
in g and n, for the Ising and Toom systems suggests t
TCA do not belong to the Ising class of universality. But o
can find the relationship between TCA and the synchroni
coupled map lattices: the first and third line of Eq.~16!. In
the case of CML it is stressed@8# that the exponent ratio
b/n and g/n do take the Ising system values. This fa
places the CML system in the weak-Ising universality cla
For the Toom system we haveb/n50.139 andg/n51.857;
see Fig. 7. Both ratios are rather different from the cor
sponding exponents of Ising system.

Before stating any final conclusion, however, we have
consider errors. Besides the systematic error stemming f
our truncation of«cr , we have a constant source of statistic
errors. The expectation values of the magnitude of magn
zation~see Figs. 1 and 4! carry the standard deviation erro
of 15 to 25 % independently of the system size. Such la
errors are expected to occur since we are in the dynam
region of ergodicity breaking and symmetry breaking. For
nately, all linear regression coefficients calculated accord

FIG. 6. Estimates forn in TCA via the finite-size theory from,
the slope of derivative of the 4th order magnetization cumulan
critical point U; the slope of the logarithm derivatives of^umu&,
^m2&, and^m4& @see Eq.~15!# at the critical point. Data collected in
1400,. . . ,120 experiments with latticesL520, . . . ,100 respec-
tively are presented on log-log plots. The numbers in~ ! mean the
correlation coefficientsr 2 for the corresponding linear fits.
-

lly
t

d

t
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to our mean values show the perfect relationship. Theref
we are sure that our results are reliable, though errors do
allow us to provide more significant digits in the present
numbers.

The above discussion supports our final statement
TCA and CML do belong to the same universality clas
although the weak-Ising class membership in case of TCA
not clear: the Toom exponents only roughly satisfy the h
perscaling relation that is characteristic for Ising and we
Ising systems: 2b1g52n.

In traditional experimental work~not computer simula-
tions! the types of continuous phase transitions are dis
guished by the shape of curves, which represent the spe
heat dependence on temperature@22,23#. In the Ising phase
transition the left wing of the curve of the specific hea
corresponding toT50, must take significantly lower value
than its right wing. The opposite case, when the specific h
is much higher before the phase transition than after it, is
characteristic feature of the, so-called, diffusive phase tr
sition.

Since in our case the concept of thermodynamic free
ergy is undefined, we evaluate the specific heat by assum
that the energy density of the system is proportional to
density of nonclustered spins. This idea arises from the
mous Pirogov-Sinai theory according to which the energy
a lattice state is carried by the contours that surround p
phase clusters@15,18#. We estimate the energy density

t

FIG. 7. Estimates for~a! b and~b! g in TCA via the finite-size
scaling: ~a! b/n from log(̂ um(«cr)u&)(L), log(̂ m2(«cr)&)(L), and
log(̂ m4(«cr)&)(L); ~b! g/n from logL2@^m2(«cr)&(L)2^um(«cr)u&2(L)# .
The log-log plots.
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TCA stationary states in two ways:~1! a nonclustered spin
means a spin for which the Toom neighborhood~1! is not
homogeneous, and~2! a nonclustered spin means a spin f
which the Ising neighborhood~i.e., the four spins surround
ing the central spin and the central spin itself! is not homo-
geneous.

The results are presented in Fig. 8. Thus, the phenom
logical classification of the continuous phase transitio
based on the shape of the specific heat curve suggests
the Toom system undergoes the phase transition of the
fusive type.

IV. GIBBSIANNESS OF TCA

The last question we would like to address is whet
TCA are the equilibrium system. We will seek the answer
checking if their stationary measure is a Gibbs one. If
stationary state is Gibbsian, then for any finite configurat
$sL%, ln m(sL) exists and represents the energy of the c
figuration $sL%. Since in TCA the existence of steady clu
ters of aligned spins is closely related to the appearanc
corresponding vertical and horizontal lines of such spins,
can expect that the energy carried by the configuration
determined by the linear size of a cluster rather than by
volume. This would suggest that the dynamics of the TC
generates the feature typical for the Ising interactions.

There are two basic features that characterize a G
measure@6,10,15,16#: quasilocality of interactions, which
means that the finite-volume conditional probabilities a
continuous with respect to the external conditions, and v
ishing of the relative entropy density between station
measures arising from the same interactions.

In this section no attempt is made to provide error bars
values presented. Errors may arise from a combination
finite-size effects, finite equilibration time effects, and sy
tematic deviations due to the choice of the measurement
cedure.

FIG. 8. Specific heat vs temperatureT @see Eq.~3!# for Toom
PCA. The specific heat is calculated as a change in the en
density caused by the small change of temperature at the g
temperature. The obtained shape hints at the diffusive mecha
of the phase transition.
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A. Quasilocality

Quasilocality on the lattice systems means that any fin
volume expectations do not depend on spins which are
ficiently distant. On the large lattice,L5300, we test the
influence of distant spins on the magnetization of a spinO,
which is located at the lattice center. The experiment goe
follows. The TCA system initiated with all spins up is left t
reach its stationary state at the given stochastic paramet«.
Then, the periodic boundary conditions are changed into
fixed boundary of all spins up. After allowing the system
reach the stationary state with the new boundaries, we b
to measure the magnetization of all spin sites located al
the central line of a lattice. The results are presented
Fig. 9.

In this experiment we are able to estimate the differen
between the magnetization of the spinO on a periodic lattice
m(sO) and the magnetization of the spinO for fixed bound-
ary conditionm„sOu(1)…. In Fig. 9 arrows mark the mini-
mal distance between the obtained magnetization value
the value observed in the stationary periodic state.

It is easy to see the conditions under which there is
observed influence of the surrounding boundaries:

~a! before the phase transition, when«.0.84, then
m„sOu(1)…5m(sO),

~b! after the phase transition, when«,0.72, then
m„sOu(1)…5m(sO)50.

However, if the plus boundary is switched to the min
boundary, thenm„sOu(2)…52m(sO). Hence, in a rather
large interval of«, there is observed influence of dista
spins on stationary states generated on the large lattice.

B. Large deviations

The stationary measures arising from any Markov proc
could be Gibbsian measures if the relative entropy den

gy
en
m

FIG. 9. Influence of boundary spins which are all set to1. TCA
evolve with different«. The influence arrives through East an
North boundaries and changes the internal lattice state. The min
subordering gained for«50.800 ism8.0.12. L5300.
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i (mun) between different stationary measuresm andn origi-
nating from the same interactions is zero. Ifi (mun).0, then
both measures are non-Gibbsian@6,15#. The large deviation
theorems@15# provide the powerful tool to estimatei (mun).
Namely, if m2 and m1 are two stationary TCA measure
corresponding to (2) and (1) phases, then the relative en
tropy density between these two measuresi (m2um1) can be
extracted from the probability that the large area of sp
with negative magnetization occurs in the stationary s
described by them1 measure. The resulti (m2um1).0
means that these measures have the probability of large
viations, which is ‘‘too small’’ for Gibbsianness.

From computer experiments we collect data on the m
netization of square blocks of the sizel 3 l . Then, using the
formula

i l~m2um1!5 lim
l→`

1

l 2ln Probabilitym1
$m~s l 3 l !,0%

~17!

we estimate the limit

i ~m2um1!5 lim
l→`

i l~m2um1!.

As was mentioned earlier, configurations, representat
of critical stationary states, contain long-living and large o
jects: domains of one phase. In Fig. 10 we present the p
ability distribution of square blocks of 20320 spins at a
given magnetization, found after averaging over subsequ
10 000 time steps. It appears that the total magnetiza
changes over a long period of time. This long time corre
tion implies difficulties in giving a reliable value for the lim
of i l(m2um1) asl→`. In Fig. 11 we present our attempts
provide the limit value fori (m2um1). If blocks of l ,40 are
considered, theni l extrapolated linearly would give zero fo
l .50. Since processing data for large blocks demands m
more computer time, we skip somel points and start our
observations at blocks, with sizesl .60. The data collected
for the blocks : 60, l ,70, indicate thati l would attain zero
when blocks are of a sizel .80. Concluding our trials, we

FIG. 10. Probability distribution of blocks with 20320 size
magnetized at a given value.«50.820 andL5100. Each curve
represents a histogram of the results observed in subsequent 1
time steps.
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can say that with the increase of the block size the deca
the relative entropy density slows down.

Fortunately, when we shift a little from the critical poin
preserving the nonergodic property of a system, we can
tain the value for the relative entropy density. The therm
dynamic state is in the nonergodic regime if the change
the phase, which is placed as the boundary, switches
phase of the inside state, see@15#. The mean magnetization
of a state on a periodic lattice obtained at«50.800 is zero. If
the (1) boundary is put in place of the periodic one, then t
mean magnetization becomes positive. Figure 12 gives e
mates fori l(m2un), wheren is the stationary measure fo
«50.800. Extrapolating these results, we conclude thatl
5105 the relative entropy density would reach zero. Ho
ever, this block size is greater than the lattice size conside
in this experiment; therefore, the relative entropy density
tween stationary measures of Toom cellular automata ev
ing in the critical regime on the periodic lattice is positive

V. CONCLUSIONS

The critical regime in TCA manifests itself in the wa
characteristic to any thermodynamic system, i.e., by
rapid increase in the two-point correlation function of sp
states, if the temperature, like stochastic parameter, is
tuned. However, analogies with equilibrium systems must
treated with great care, especially when the stochastic par
eter« is defined at the microscopic scale only, and cannot
easily related to the macroscopic temperature.

On the stationary configurations of TCA we observe t
process of emergence of islands of one phase. The me
nism behind this phenomenon is the following: once the l

000

FIG. 11. Decay of relative entropy densityi l(2u1) indicated
by blocks of l ,40 points atl .50 as the block size for which
i l(2u1)'0 ~dashed line with regression21.8 1025). The data
collected for l 561, . . . ,70 ~dotted line with regression
21.5 1025) yield different~larger! block size fori l to attain zero.
The numbers in~ ! mean the correlation coefficientr 2 for the pre-
sented data.
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of aligned spins located orthogonally to North-East direct
is established, the dynamics proceeds to spread the pha
the interior below this line, i.e., towards South and West. T
island formed in this process attains the characteristic sh
of the scaled basic neighborhood. This characteristic sh
allows the long existence of any island. The process invol
in formation of steady clusters of one phase seems to
similar to that which governs the critical behavior in all sy
tems of the Ising type. However, in case of TCA the spec
conditions necessary to establish a steady island make
total probability that a cluster of opposite phase forms
small for Gibbsianness.

On one hand, the static critical exponents found by
n50.85, b50.12, andg51.59 are roughly consistent wit
the hyperscaling relation 2b1g52n, which is typical for

FIG. 12. Density of the relative entropy between stationary m
suresm2 andn, which is the measure of TCA shifted a little from
the critical point. Linear regression indicatesi l50 at l .105. This
is impossible on the lattice of sizeL5100. The number in~ ! mean
the correlation coefficientr 2 for the linear fit.
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fluctuation dominated transitions. On the other hand,
specific-heat property indicates the diffusive mechanism
the phase transition. These two mechanisms govern toge
the phase transition result that the values of the partic
exponents of Toom cellular automata are distinct from th
corresponding to Ising system. Moreover, TCA seem to
belong to the weak-Ising universality class, either. Howev
the values of TCA exponents are close to the values foun
the synchronized CML system.

In general, deriving accurate numerical estimates
quantities, which characterize the critical regime of an e
tended dynamical system, is a difficult task; see@8# and ref-
erences given therein. We believe that the employed m
odology here is reliable. Estimates of critical exponentsn
andb are derived from at least three quantities. Only eva
ation of theg static exponent is based on the properties
one function. Although the statistical errors accompany
measured observables are large, the correlation coeffici
for our linear fits are always very close to 1. This fact ad
tionally ensures accuracy of the presented results. Howe
these results could be easily improved if one performs
periments which provide access to the critical point clo
than we have done.

Our considerations on Gibbsianness are also accompa
by relatively large errors. In numerical studies we have
balance the influence of periodicity of the system and co
puter efficiency. The effect of the system periodicity is tha
self-created island of one phase~which appears at random!
can dominate the stationary state for a long time. This is
until the next island emerges and takes over the domina
in the configuration. The way to weaken this constant p
cess of changes in the stationary state is to consider la
blocks on the larger lattice for longer times of observatio
However, the computer efficiency goes down rapidly wh
the system size increases. The other way of improving r
ability of our estimates consists of searching parallelly
densities of the relative entropyi (m2um1) in Toom CA and
Domany CA. This is our program for the future.

This research was supported by Polish Committee of
search KBNPB0273/P03/99/16. Simulations were partia
performed in the TASK-Academic Computer Center
Gdansk, Poland.
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